期刊专题

10.13413/j.cnki.jdxblxb.2017.03.20

基于双曲IFSP的概率测度和Dirac测度

引用
利用Markov算子对测度作用的方法,研究等概率条件下基于双曲迭代函数系的Cantor三分集、Sierpinski直角三角形和Koch曲线等典型分形集中概率测度与Dirac测度的关系,得到了概率相等和概率不等时更一般分形集中概率测度与Dirac测度的关系.

带概率的双曲迭代函数系(双曲IFSP)、概率测度、Dirac测度、吸引子

55

O174.12(数学分析)

国家自然科学基金11571276,11501343

2017-06-14(万方平台首次上网日期,不代表论文的发表时间)

共6页

581-586

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

55

2017,55(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn