期刊专题

10.13413/j.cnki.jdxblxb.2017.02.34

基于小波-ELM神经网络的短期停车泊位预测

引用
采用小波变换与极限学习机(ELM)相结合的方法对短时空余停车泊位进行预测.首先通过小波函数对有效停车泊位时间序列进行小波分解和重构;然后用ELM对分解后所得的各时间序列进行预测;最后对各神经网络的预测结果进行合成,得到最终的预测结果.预测实例结果表明,该方法缩短了训练时间,提高了预测结果.

停车泊位管理系统、空余停车泊位、小波变换、极限学习机

55

TP391(计算技术、计算机技术)

国家自然科学基金青年基金61305046;吉林省自然科学基金20140101193JC,20150101055JC

2017-04-24(万方平台首次上网日期,不代表论文的发表时间)

共5页

388-392

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

55

2017,55(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn