期刊专题

基于聚类和局部信息的离群点检测算法

引用
针对目前大部分离群点检测算法未考虑数据的局部信息,导致离群点检测的准确率低问题,提出一种新的基于聚类和局部信息的两阶段离群点检测算法.通过定义新的局部离群因子作为判断数据对象是否为离群点的衡量标准,改进了传统离群点检测算法的过程.实验结果表明,该算法在保持线性复杂度的同时,能更准确、有效地挖掘出数据集中的离群点.

离群点检测、k-means聚类、局部离群因子

50

TP391(计算技术、计算机技术)

吉林省科技发展计划重点项目20090304

2013-02-28(万方平台首次上网日期,不代表论文的发表时间)

共4页

1214-1217

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

50

2012,50(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn