期刊专题

PCR-RBF-SVM预测模型在财政数据中的应用

引用
通过使用支持向量机算法将主成分回归的线性预测结果和径向基神经网络的非线性预测结果相结合,提出一种新的预测模型,该模型提高了预测精度,解决了预测方式单一的问题.将新预测模型应用于财政数据预测结果表明,与传统主成分回归和径向基神经网络方法相比,该模型预测效果更好.

主成分回归、径向基神经网络、支持向量机、预测

50

TP399(计算技术、计算机技术)

国家自然科学基金60673099, 60873146;吉林省科技发展计划重点项目20090304

2012-04-27(万方平台首次上网日期,不代表论文的发表时间)

共3页

111-113

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

50

2012,50(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn