期刊专题

10.3969/j.issn.1003-3580.2013.03.002

基于RBF神经网络的GDP时间序列预测模型研究

引用
对GDP进行高精度的分析预测,对制定经济发展战略、规划年度计划以及各种宏观经济政策,具有重要的理论与现实意义.本文采用RBF神经网络作为工具,建立基于RBF神经网络的GDP时间序列预测模型,并与ARIMA模型进行对比,对上海市22年的GDP数据进行了仿真实验.实验表明,ARIMA模型对上海市GDP数据进行预测的精度仅为91.8754%,而本文提出的RBF_TSF模型的预测精度则高达95.0360%.这表明本文提出的RBF TSF比ARIMA模型在GDP时间序列预测上具有更高的预测精度.同时该模型收敛迅速,具有很强的实用价值.

RBF神经网络、GDP、ARIMA、预测

TU7;TP1

国家自然科学基金71071113

2013-06-13(万方平台首次上网日期,不代表论文的发表时间)

共4页

10-13

暂无封面信息
查看本期封面目录

经济论坛

1003-3580

13-1022/F

2013,(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn