期刊专题

10.3969/j.issn.1001-5078.2022.01.020

迁移学习在天基红外目标识别中的应用

引用
星载红外传感器对飞行的火箭进行识别时,因为观测数据有限,一般属于小样本甚至单样本学习的分类问题.本文建立了一种以一维全卷积为主体结构的孪生神经网络,将多分类问题转化为比较相似度的验证问题;并利用UCR时间序列数据集的预训练权重,对孪生神经网络的卷积特征提取部分进行知识迁移,最后使用公开文献中火箭红外辐射强度序列数据对网络进行微调,形成了一个能够比较两型火箭相似度的迁移学习网络.实验结果表明,本文建立的模型能够从其他数据集中学习到有利于时间序列相似性度量的信息,训练过程也具备可行性,在单样本情况下能较好地实现对火箭的识别.

目标识别;迁移学习;孪生神经网络

52

TP75(遥感技术)

重点实验室基金项目No.61424080215

2022-03-01(万方平台首次上网日期,不代表论文的发表时间)

共7页

122-128

相关文献
评论
暂无封面信息
查看本期封面目录

激光与红外

1001-5078

11-2436/TN

52

2022,52(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn