10.3969/j.issn.1001-5078.2021.09.003
基于特征点和关键点提取的点云数据压缩方法
针对采集到的点云数据中含有大量的冗余数据,为后期数据处理及其应用带来诸多不便,而采用现有通用压缩方法压缩后的点云容易造成细节特征丢失问题,为此,本文提出一种基于特征点和SIFT关键点提取的点云数据压缩方法.该方法的核心技术是首先根据查询点与邻域中的点所构成向量的夹角而提取边界点;然后根据点云数据的曲率和法向量夹角提取尖锐点,据此使特征点在点云压缩处理过程中得到绝对被保留;同时在平坦区域提取SIFT关键点,这样能避免在曲率变化缓慢区域所保留的并不是特征点;最后融合特征点和SIFT关键点而实现对点云数据的压缩处理.研究通过设计与现有两种基于曲率压缩方法进行对比实验分析,结果表明本文所提方法既能最大量的去除冗余数据,又能保留点云中大部分特征点,实现了点云数据的高质量压缩.
点云压缩;特征点;边界点;尖锐点;SIFT关键点
51
TP242(自动化技术及设备)
国家自然科学基金项目No.41861054
2021-11-08(万方平台首次上网日期,不代表论文的发表时间)
共8页
1129-1136