10.3969/j.issn.1001-5078.2020.09.020
基于双树复小波变换的红外小目标检测算法
双树复小波分析是一种有效的图像处理方法,但是将其直接应用于红外小目标检测时,由于其对图像中的高频信息特别敏感,无法在保留目标的同时有效地滤除噪声.论文充分利用双树复小波方法方向性好的优点,并针对其高频敏感问题,提出了一种基于双树复小波变换与图像熵的红外小目标检测算法,从而能够有效去除图像中的杂波,同时凸显出小目标.该算法首先对原始图像进行双树复小波分解,将其低频子带置零,并利用高频子带进行双树复小波重构;接着,对重构后的图像进行二次双树复小波分解,并采用改进的Top-Hat算子对分解后的低频子带进行滤波,同时保留分解后 ±15°方向的子带,并通过高通滤波对其进行处理;之后,将滤波后的低频子带图像与原低频子带图像进行差分,得到低频差分图像;最后,利用低频差分图像与滤波后的高频子带图像进行红外图像重构,并通过局部图像熵进行加权,从而提取出红外小目标.实验结果表明,与对比算法相比,本文算法在BSF与SCRG方面表现优越,可以有效抑制背景中的杂波并提高小目标的信杂比.
红外小目标、双树复小波、二次小波分解、改进Top-Hat、图像熵
50
TP391.4(计算技术、计算机技术)
中国自然科学基础研究项目No.61772325
2020-09-24(万方平台首次上网日期,不代表论文的发表时间)
共8页
1145-1152