期刊专题

10.3969/j.issn.1001-5078.2020.02.018

应用于嵌入式平台的实时红外行人检测方法

引用
现有基于深度学习的远红外图像行人检测方法对计算力要求高,需要高功耗GPU计算平台,应用于嵌入式平台时,无法满足实时性和准确率需求.针对该问题,本文提出了一种新型实时红外行人检测方法,该方法使用MobileNet作为YOLOv3模型中的基础网络,辅助预测网络层以深度可分离卷积替换标准卷积,将模型改进为轻量红外行人检测模型.基于新方法构建的模型采用CVC红外行人训练集离线训练,并部署于嵌入式平台,实现红外行人在线实时检测.实验结果表明,与改进前方法相比,模型大小为65 M,约为YOLOv3的27%,新模型在基本保证原有准确率的同时,大幅降低了计算量,在同一平台下的检测速度从3 FPS提升到了11 FPS,可满足大部分嵌入式系统对行人检测的实时性需求.

红外图像、行人检测、嵌入式平台、深度卷积神经网络

50

TP391.41(计算技术、计算机技术)

2020-04-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

239-245

暂无封面信息
查看本期封面目录

激光与红外

1001-5078

11-2436/TN

50

2020,50(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn