期刊专题

10.3969/j.issn.1001-5078.2020.02.007

T-S型RBF神经网络在红外火焰探测系统中的应用

引用
基于T-S(Takagi-Sugeno,高木-关野)模型RBF(Radial Basis Function,径向基函数)神经网络,提出了一种应用于三波段点型红外火焰探测器的识别算法,同时实现了硬件电路以及软件程序的设计.针对火焰探测器在检测过程中可能出现的数据丢失、失真、饱和等复杂情况,本文利用RBF网络较优的逼近精度和泛化能力,同时结合T-S模型用少量的模糊规则可生成较复杂的非线性函数的特点,实现了火焰与干扰源的准确识别.实验证实,T-S模型RBF神经网络相比于BP(Back Propagation,反向传播)网络在逼近精度、收敛速度、鲁棒性等多个方面都有所提升.

T-S模型、RBF神经网络、三波段红外、火焰探测

50

TN215(光电子技术、激光技术)

国家自然科学基金项目No.61374047

2020-04-10(万方平台首次上网日期,不代表论文的发表时间)

共6页

168-173

暂无封面信息
查看本期封面目录

激光与红外

1001-5078

11-2436/TN

50

2020,50(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn