期刊专题

10.3969/j.issn.1001-5078.2018.11.022

基于YOLO模型的红外图像行人检测方法

引用
针对基于传统特征提取方法的远红外图像行人检测存在准确率和实时性不足的问题,本文研究了一种基于改进YOLO模型的远红外行人检测方法,通过改进其深度卷积神经网络的输入分辨率,然后在基于实际道路采集的红外数据集上进行训练,得到检测效果最佳的检测模型,并提出基于车速的自适应图像分辨率模型,以提高车载系统的行人检测性能.在基于实际道路的红外数据集上的对比实验表明,该方法与传统方法相比,准确率从76.5%提高到89.2%,每秒传输帧数从0.01259 f/s提高到40.5 f/s,满足车载情况下的实时性需求.

红外图像、行人检测、深度卷积神经网络、YOLO

48

TP391(计算技术、计算机技术)

江苏省重点研发项目BE2017035

2019-01-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

1436-1442

暂无封面信息
查看本期封面目录

激光与红外

1001-5078

11-2436/TN

48

2018,48(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn