期刊专题

10.3969/j.issn.1001-5078.2014.06.019

一种创新性激光图像三维目标识别算法

引用
针对径向基神经网络在激光图像分类识别中识别率低及训练时间长的问题,提出粗糙集与神经网络相结合的方法,将粗糙集算法简约后的样本特征作为神经网络的前置输入。首先建立不同视点的激光主动成像三维仿真图像,然后提取17个目标特征,并采用粗糙集算法选择分类的属性,从17个特征中筛选出5个影响决策的特征属性,最后选用4层径向基神经网络作为基本的网络结构,并采用在各层节点上与粗糙集相结合方法识别目标。仿真结果表明,结合粗糙集的集成神经网络方法识别正确率保持在80%以上,与未结合粗糙集的神经网络相当,但训练与识别时间缩短10倍以上。

粗糙集、神经网络、激光图像、目标识别

TP391(计算技术、计算机技术)

2014-07-23(万方平台首次上网日期,不代表论文的发表时间)

共6页

676-681

相关文献
评论
暂无封面信息
查看本期封面目录

激光与红外

1001-5078

11-2436/TN

2014,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn