10.3969/j.issn.1001-5078.2014.06.019
一种创新性激光图像三维目标识别算法
针对径向基神经网络在激光图像分类识别中识别率低及训练时间长的问题,提出粗糙集与神经网络相结合的方法,将粗糙集算法简约后的样本特征作为神经网络的前置输入。首先建立不同视点的激光主动成像三维仿真图像,然后提取17个目标特征,并采用粗糙集算法选择分类的属性,从17个特征中筛选出5个影响决策的特征属性,最后选用4层径向基神经网络作为基本的网络结构,并采用在各层节点上与粗糙集相结合方法识别目标。仿真结果表明,结合粗糙集的集成神经网络方法识别正确率保持在80%以上,与未结合粗糙集的神经网络相当,但训练与识别时间缩短10倍以上。
粗糙集、神经网络、激光图像、目标识别
TP391(计算技术、计算机技术)
2014-07-23(万方平台首次上网日期,不代表论文的发表时间)
共6页
676-681