期刊专题

10.3969/j.issn.1001-5078.2012.02.017

融合SVM和AdaBoost的近红外人脸识别方法

引用
针对人脸识别算法复杂度高和误检率高的问题,提出了一种在二维主元分析(2DPCA)方法基础上,融合支持向量机(SVM)和AdaBoost训练法的近红外人脸识别新算法.该算法首先对近红外光照下的图像通过人脸检测、小波变换和二维主元分析得到“特征脸”;然后,对特征数据先进行SVM分类学习,并以SVM学习结果作为初始分类器,再通过Ada-Boost方法进一步加强,形成强分类器,作用于待测样本,完成识别.实验证明,该算法不仅提高了分类器的分类能力,而且降低了计算的复杂度,在实际场景应用中有较高的识别率.

模式识别、人脸识别、支持向量机、AdaBoost训练法

42

TP391.4(计算技术、计算机技术)

教育部博士点基金课题20090032110051

2012-04-27(万方平台首次上网日期,不代表论文的发表时间)

共5页

192-196

相关文献
评论
暂无封面信息
查看本期封面目录

激光与红外

1001-5078

11-2436/TN

42

2012,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn