期刊专题

10.3788/LOP202259.1215019

多尺度特征融合与锚框自适应的目标检测算法

引用
针对Faster R-CNN算法存在特征提取不充分、检测框定位不准确导致检测精度不高的问题,提出一种多尺度特征融合和锚框自适应相结合的目标检测算法.首先,通过双向融合方法充分提取相邻层级间的深层特征和浅层特征;然后,均衡化处理多尺度特征,使集成的特征能获得来自不同分辨率下等量的语义信息和细节信息,提高目标的识别能力;最后,在区域提议网络(RPN)中利用目标的特征信息,通过自适应预测锚框的位置和形状来生成锚框.基于VOC数据集对算法的实验结果表明:与基于ResNet50的Faster R-CNN算法相比,所提算法中的多尺度特征融合策略加强了算法对不同尺度目标的检测能力,自适应锚框机制能够提高定位精度并避免小目标的漏检,算法整体的检测结果具有较好表现,平均检测精度提升了 3.20个百分点.

机器视觉、目标检测、Faster R-CNN算法、特征融合、锚框自适应

59

TP391.4(计算技术、计算机技术)

2022-08-01(万方平台首次上网日期,不代表论文的发表时间)

共10页

410-419

暂无封面信息
查看本期封面目录

激光与光电子学进展

1006-4125

31-1690/TN

59

2022,59(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn