期刊专题

10.3788/LOP202259.1215002

改进的Tiny YOLOv4算法及其在行人检测中的应用

引用
针对Tiny YOLOv4目标检测算法在行人检测中精确度低和召回率不高的问题,对特征提取网络及预测网络进行改进.在特征提取网络部分采用深度可分离卷积网络取代传统卷积网络,这减少了参数并降低了计算量;将注意力机制模块加入特征提取网络中以增强检测目标的感兴趣区域,提高检测精确度;在预测网络部分增加一个预测尺度,对增加的尺度进行特征增强处理,以提升目标检测的召回率.实验结果表明,与原算法相比,改进后的Tiny YOLOv4算法的检测精确度提升了7.1%,召回率提升了6.6%.

机器视觉、目标检测、深度可分离卷积、注意力机制、尺度增强预测

59

TP391.4(计算技术、计算机技术)

安徽工程大学检测技术与节能装置安徽省重点实验室开放基金DTESD2020A06

2022-08-01(万方平台首次上网日期,不代表论文的发表时间)

共8页

246-253

相关文献
评论
暂无封面信息
查看本期封面目录

激光与光电子学进展

1006-4125

31-1690/TN

59

2022,59(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn