期刊专题

10.3788/LOP202158.2028005

基于RDA-Net模型的遥感影像云与云阴影检测方法

引用
针对目前大多数云与云阴影检测方法容易产生误检、边缘细节丢失严重以及检测不够精确的问题,提出一种基于双注意力卷积神经网络模型(RDA Net)的遥感影像云与云阴影检测方法.模型中引入双注意力模块可以有效捕获全局特征的依赖关系,使用递归残差模块可以避免深层网络出现退化,改进空洞空间金字塔池化模块在不改变特征图尺寸的前提下可以提取图像的多尺度特征.首先对遥感影像数据集进行预处理并制作对应的标签,然后利用高分一号WFV遥感影像数据集进行训练和测试.实验结果表明,所提方法有效提高云与云阴影的检测精度,在复杂条件下仍能获得较好的云与云阴影的边缘细节.

遥感、双注意力、云与云阴影检测、递归残差、改进空洞空间金字塔池化

58

TP751.1;P426.5(遥感技术)

国家自然科学基金;国家自然科学基金;江苏省高等学校自然科学研究项目;江苏省自然科学基金青年项目

2021-12-16(万方平台首次上网日期,不代表论文的发表时间)

共11页

490-500

相关文献
评论
暂无封面信息
查看本期封面目录

激光与光电子学进展

1006-4125

31-1690/TN

58

2021,58(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn