期刊专题

10.3788/LOP202158.2015002

结合缓冲区与三元组损失的孪生网络目标跟踪

引用
针对SiamRPN(Siamese Region Proposal Network)在目标被短时遮挡以及外观剧烈变化的情况下存在定位不准确的问题,提出一种结合目标跟踪缓冲区与三元组损失的目标跟踪算法.该算法首先将原有的固定模板改为动态模板,提升复杂环境下相似度判别的可靠性;然后在模板缓冲区稀疏地缓存目标外观以应对跟踪过程中非语义样本的干扰,增强目标跟踪的鲁棒性;最后应用三元组损失以充分利用目标的正负样本特征,使跟踪更加具有判别能力.使用OTB100数据集进行实验,结果表明所提算法的成功率曲线下面积较SiamRPN提高了0.021,平均中心位置误差降低了25.56 pixel,平均重叠率提高了25.2%.

机器视觉、孪生网络、区域提议网络、缓冲区、三元组损失

58

TP391.4(计算技术、计算机技术)

国家自然科学基金;陕西省科技厅重点研发计划;西安市科技计划;西安市未央区科技计划;西安工业大学校长基金面上培育项目

2021-12-16(万方平台首次上网日期,不代表论文的发表时间)

共10页

357-366

暂无封面信息
查看本期封面目录

激光与光电子学进展

1006-4125

31-1690/TN

58

2021,58(20)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn