雨雪天气条件下的运动目标检测
针对雨雪天气条件下的运动目标检测受到天气的影响较大,提出一种融合全变分(TV)正则化和Rank-1约束鲁棒主成分分析(RPCA)模型的视频序列运动目标检测算法.利用RPCA这一工具,在低秩稀疏分解框架下,采用Rank-1约束描述背景层的强低秩性,利用TV正则化结合L1范数对前景目标的稀疏性和空间连续性进行约束,从而弥补现有RPCA模型的不足.针对所提模型,采用交替迭代乘子法的思想结合增广拉格朗日乘子法对目标函数进行优化求解.实验结果表明,所提算法不仅能够准确检测出运动目标,而且具有较短的运行时间,这为视频的实时检测提供参考.与其他同类算法相比,所提算法不仅检测效果更佳,而且在F测度值、召回率和准确率的定量评价中均有优越性.
机器视觉、鲁棒主成分分析、全变分正则化、Rank-1正则化、运动目标检测
57
TP391.4(计算技术、计算机技术)
国家自然科学基金;江西省教育厅科技项目
2021-03-04(万方平台首次上网日期,不代表论文的发表时间)
共8页
343-350