期刊专题

10.3788/LOP57.241011

基于卷积神经网络的数码印花缺陷分类算法

引用
针对应用深度学习检测数码印花缺陷需准确分类的问题,提出了基于卷积神经网络(CNN)的数码印花缺陷分类算法.该方法首先依次对图像进行RGB颜色空间直方图均衡化、高斯滤波、局部均值分辨率调整的图像预处理,提升输入网络的图像质量,并进行图像几何变换的数据增强,扩充样本数据集;然后,设计拓扑结构为2个卷积层、2个池化层、2个全连接层的CNN网络对样本进行训练,得出最优的数码印花缺陷分类CNN模型.经600张测试样本验证,结果表明,该算法对各类数码印花缺陷的分类准确率均超过90.0%,多分类任务Kappa系数值为0.94,能实现数码印花缺陷的准确分类.

图像处理、卷积神经网络、缺陷分类、数码印花

57

TP391.4(计算技术、计算机技术)

陕西省重点研发计划;陕西省教育厅科学研究项目

2021-03-04(万方平台首次上网日期,不代表论文的发表时间)

共9页

128-136

暂无封面信息
查看本期封面目录

激光与光电子学进展

1006-4125

31-1690/TN

57

2020,57(24)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn