期刊专题

10.3788/LOP57.101502

自适应粒子群优化匹配追踪声音事件识别算法

引用
针对公共环境中的声音事件识别问题,提出基于自适应粒子群优化(PSO)匹配追踪(MP)稀疏分解的声音事件识别算法.该算法在分析MP稀疏分解的基础上,先基于适应度函数改进PSO算法相关参数的自适应设置,再基于自适应PSO算法构建优化MP稀疏分解的目标函数及信号重构函数,实现自适应PSO算法优化MP稀疏分解,从而借助连续Gabor超完备集来提高最优原子的匹配程度,增强声音信号,提高特征的分类性能,最后使用优化的支持向量机(SVM)和复合特征实现公共环境中的声音事件准确识别.实验结果表明,与已有算法相比,所提识别算法显著降低了计算量,并取得了最优的声音识别率,且具有较好的识别鲁棒性.

机器视觉、声音事件识别、自适应粒子群算法、匹配追踪、稀疏分解、支持向量机

57

TP391.4(计算技术、计算机技术)

辽宁省教育厅科学研究项目ldxy2017008

2020-07-02(万方平台首次上网日期,不代表论文的发表时间)

共7页

285-291

相关文献
评论
暂无封面信息
查看本期封面目录

激光与光电子学进展

1006-4125

31-1690/TN

57

2020,57(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn