期刊专题

10.3788/LOP56.151502

基于深度残差网络与边缘监督学习的显著性检测

引用
针对复杂背景下,图像显著区域显著值低和目标边缘表现模糊的问题,提出了基于深度残差网络和多尺度边缘残差学习的显著性检测方法.一方面提出了边缘残差块,使用边缘残差块在深度残差网络的基础上构建边缘监督网络,用于显著图边缘监督学习;另一方面,通过构建基于背景、前景和边缘的三分类模型,训练网络学习边缘特征,使目标边缘更加准确,同时输出采用空洞卷积构建多尺度空洞卷积单元,多尺度地对全局信息进行特征整合提取.最后,将提出的算法在数据集SED2和ECSSD上进行模型简化测试,使用公认评价指标对所提算法和当前多种算法进行评价.实验结果表明,该方法的准确率和召回率更高,对显著目标保持了良好的完整性,且在边缘轮廓区域更好地区分了显著目标与背景.

机器视觉、显著性检测、边缘残差块、三分类模型、多尺度空洞卷积

56

TP391.41(计算技术、计算机技术)

国家自然科学基金;国家重点研发计划;教育部-中国移动科研基金

2019-09-25(万方平台首次上网日期,不代表论文的发表时间)

共9页

136-144

相关文献
评论
暂无封面信息
查看本期封面目录

激光与光电子学进展

1006-4125

31-1690/TN

56

2019,56(15)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn