期刊专题

10.16413/j.cnki.issn.1007-080x.2017.05.009

解决离群点的最小法向离散度模糊支持向量机

引用
对最小化数据集在超平面法向离散程度进行了研究,提出一种改进的支持向量机,称为最小法向离散度模糊支持向量机(minimal normal scatter fuzzy support vector machine,MNS-FSVM).MNS-FSVM通过使优化目标在最大化几何间隔与最小化数据集在超平面法向离散程度之间达到一个平衡来减小离群点对超平面的影响.对二个基准数据集进行了实验验证,结果表明,MNS-SVM不仅能够提高分类的准确率,对离群点也有很好的鲁棒性.

模糊支持向量机、离群点、法向离散度、隶属度

23

2018-08-14(万方平台首次上网日期,不代表论文的发表时间)

共6页

53-58

相关文献
评论
暂无封面信息
查看本期封面目录

机电一体化

1007-080X

31-1714/TM

23

2017,23(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn