期刊专题

10.3969/j.issn.1671-0797.2021.06.001

基于R-ELM算法的火电发电量预测

引用
R-ELM算法是将极限学习机(ELM)算法和递归预测相结合的系统动态建模方法,即对ELM中的隐含层节点数进行递归寻优,得到最优隐含层节点数.现建立了一种基于R-ELM算法的火电企业短期日发电量预测模型,该模型根据气象预报中日最高温度和日最低温度,利用过去一段时间的火电实际发电量数据来预测未来4~7天的短期日发电量值.实践结果显示,R-ELM算法能快速找到最优隐含层节点数,提高预测精度和泛化能力.

火电发电量预测、ELM算法、递归预测、动态建模

2021-03-09(万方平台首次上网日期,不代表论文的发表时间)

共3页

1-3

相关文献
评论
暂无封面信息
查看本期封面目录

机电信息

1671-0797

32-1628/TM

2021,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn