期刊专题

10.19783/j.cnki.pspc.200033

基于Attention-GRU的短期电价预测

引用
通过分析得出电价与负荷具有相关性,因此在电价预测模型中需要考虑实时负荷的影响.在此基础上针对前馈神经网络不能处理时序数据的缺陷与LSTM神经网络预测速度慢的问题,提出了一种基于Attention-GRU(Attention gated recurrent unit,Attention-GRU)的实时负荷条件下短期电价预测模型.该模型充分利用电价的时序特性,并采用Attention机制突出了对电价预测起关键性作用的输入特征.以美国PJM电力市场实时数据为例进行分析,通过与其他几种预测模型相比,验证了该方法具有更高的预测精度;与LSTM神经网络相比具有更快的预测速度.

短期电价预测、LSTM、GRU、Attention机制

48

陕西省自然科学基金项目资助;陕西省自然科学基础研究计划项目资助

2020-12-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

154-160

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统保护与控制

1674-3415

41-1401/TM

48

2020,48(23)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn