期刊专题

10.19783/j.cnki.pspc.200981

基于聚类分析和混合自适应进化算法的短期风电功率预测

引用
针对传统风电功率预测方法难以满足精细化、动态化建模要求,存在易陷入局部最优等问题,提出了基于聚类分析和混合自适应进化算法(KHEA)的风电功率智能预测方法.首先,采用K均值聚类算法对全年风速和功率数据进行聚类,剔除不合理的数据.然后,采用小波变换(WT)识别功率数据的行为特征,获得解构序列集,进而建立BP神经网络模型对未来时间段的功率解构序列进行预测.为减少预测误差,采用进化粒子群算法(EPSO)对模型的权值和阈值进行调整和优化,实现EPSO进化特性与神经网络自学习能力的功能互补.最后,运用逆小波变换对预测序列进行重构,获得最终的功率预测值.运用中国南方某风电场数据开展仿真实验,并与其他模型进行对比,表明KHEA具有更高的风电功率短期预测精度和可靠性,为提高风电功率预测精度和优化调度管理提供了新的技术方案.

风电功率预测、K均值聚类算法、进化粒子群算法、小波变换、神经网络

48

中国博士后科学基金面上项目资助;国家自然科学基金项目资助;国网湖南省电力有限公司科技项目资助

2020-12-09(万方平台首次上网日期,不代表论文的发表时间)

共8页

151-158

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统保护与控制

1674-3415

41-1401/TM

48

2020,48(22)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn