期刊专题

10.19783/j.cnki.pspc.191534

基于天牛须搜索优化支持向量机的变压器故障诊断研究

引用
为了准确地判断变压器绕组是否出现故障,保证变压器供电的可靠性,提出了一种基于天牛须搜索算法优化支持向量机(BAS-SVM)的变压器绕组故障诊断方法.采用支持向量机(SVM)作为变压器绕组形变程度的分类器,并应用天牛须算法对SVM的核函数和惩罚因子进行优化,通过人工经验训练BAS-SVM,使其具有很高的故障诊断精度.为了比较BAS-SVM算法在变压器绕组故障诊断的优越性,采用改进的粒子群优化算法(MPSO)优化SVM.通过仿真验证,BAS-SVM算法的故障诊断准确率比MPSO-SVM算法的故障诊断准确率高10%.最后通过实例验证了BAS-SVM算法对变压器绕组故障诊断的可行性.

变压器、故障诊断、BAS-SVM、绕组变形、MPSO-SVM

48

国家电网公司总部科技项目资助;国网河南省电力公司2019年科技项目资助

2020-11-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

90-96

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统保护与控制

1674-3415

41-1401/TM

48

2020,48(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn