期刊专题

10.19783/j.cnki.pspc.190760

基于IFOA-GRNN的短期电力负荷预测方法研究

引用
针对智能用电环境下负荷随机性强、短期电力负荷预测精度差、计算时间长等问题,提出了一种结合改进果蝇优化算法IFOA和广义回归神经网络GRNN的预测方法.模型的输入因子为负荷数据和气象信息等.通过改进果蝇优化算法的搜索距离,增强其搜索能力,优化广义回归神经网络GRNN的平滑因数,提高预测的网络性能和精度.通过仿真验证预测方法的准确性和有效性.结果表明,改进后的方法可以减小预测误差,提高算法的稳定性.该研究为我国电力负荷预测的发展提供了参考和借鉴.

电力负荷预测、果蝇优化算法、广义回归神经网络、平滑因数

48

国家十三五重点研发项目资助2017YFB0602500

2020-05-29(万方平台首次上网日期,不代表论文的发表时间)

共7页

121-127

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统保护与控制

1674-3415

41-1401/TM

48

2020,48(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn