期刊专题

10.7667/PSPC180251

基于改进乌鸦算法和ESN神经网络的短期风电功率预测

引用
精确的短期风电功率预测对于提升电力系统经济稳定运行十分重要.为了克服传统的神经网络在参数选取中容易受主观因素影响和陷入局部最优的不足,提出一种基于改进乌鸦算法(ICSA)优化回声状态神经网络(ESN)参数的短期风电功率组合预测方法.在算法寻优初期引入Lévy飞行机制增强搜索效率,而在迭代后期加入高斯函数,对进化后的全部轨迹进行相应的调整,保证算法的全局寻优和逐次逼近能力;通过改进的CSA算法对ESN神经网络输出层连接权值矩阵进行优化以提高网络的训练效率.最后利用两组实验数据对预测模型进行了有效性验证,结果表明,所提算法能有效应对风电功率时序的随机性和不确定性特征,具有更高的建模精度和更快的收敛速度.

乌鸦算法、Lévy飞行、ESN神经网络、高斯函数、风电功率预测

47

国家自然科学基金项目资助51677072

2019-06-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

58-64

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统保护与控制

1674-3415

41-1401/TM

47

2019,47(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn