风电场输出功率异常数据识别与重构方法研究
电力大数据是电力发展的重要资源,数据来源于电力生产和电能使用的各个环节。风电运行数据是电力大数据的重要组成部分,随着风电穿透功率的增大,风电数据的采集、处理、分析对风电场运行、控制与并网研究有重要意义。然而,从风电场收集到的大量数据中通常包含异常数据点,这样的异常点给风电功率波动特性、风电功率预测等方面研究带来负面影响。分析了风电场历史运行数据中存在的异常数据的主要来源,并针对该实际问题,采用基于四分位算法的数学模型对异常数据进行识别。在数据缺失的情况下,以可用历史数据为基础,采用基于临近风电场出力模式性的方法和多点三次样条插值方法重构出完整的时间序列。算例分析给出了两种重构方法的重构效果以及各自的适应性,结果表明采用所提出的方法能够有效识别、剔除异常数据并重构缺失数据,对不同风电场有较强的通用性,具有一定的工程实用价值。
风电场、风电运行数据、电力大数据、异常数据、重构
TM619(发电、发电厂)
国家自然科学基金项目51477174,51077126This work is supported by National Natural Science Foundation of China 51477174 and 51077126
2015-03-30(万方平台首次上网日期,不代表论文的发表时间)
共8页
38-45