期刊专题

基于多分类相关向量机的变压器故障诊断新方法

引用
变压器故障诊断本质为多分类问题,具有故障样本数据少,故障不确定因素多的特点.现有变压器故障诊断方法中,贝叶斯网络(BN)需要大量样本数据且计算量大,支持向量机(SVM)存在规则化系数确定困难的局限.针对此现状,提出基于多分类相关向量机(M-RVM)的变压器故障诊断新方法.该方法以变压器溶解气体含量比值作为M-RVM模型的输入,采用快速type-II 最大似然(Fast Type-II ML)和最大期望估计(EM)的方法进行模型推断,诊断输出为各故障类别的概率,以概率最大的故障类别作为诊断结果.实例分析表明该方法诊断速度较快,能满足工程需要,同基于BN和SVM的变压器故障诊断方法相比,具有较高的诊断正确率.

多分类、相关向量机、贝叶斯网络、支持向量机、变压器故障诊断

TM41;TM711(变压器、变流器及电抗器)

2013-03-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

77-82

相关文献
评论
相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn