期刊专题

10.3969/j.issn.1674-3415.2012.21.019

基于算法融合的自适应短期负荷组合预测模型研究

引用
组合预测把多种单一预测方法按一定方式结合,综合利用各种预测方法所提供的信息,并在综合这些信息的基础之上进行最优组合.采用支持向量机(SVM)实现分时段变权重组合预测,描述多种方法的预测结果与实际负荷的非线性关系,并采用改进粒子群(PSO)与模拟退火(SA)自学习融合的协同优化方法 SA-MPSO 对 SVM 模型参数进行优化,用两种不同特性的测试函数对该优化算法的收敛性进行测试,通过多次测试平均值验证其收敛性.实例仿真中, SA-MPSO 优化的 SVM 模型实现对三个不同预测模型的组合,预测结果表明,该方法除了避开传统组合预测模型权重复杂求取问题,且参数优化自适应能力强,有利于预测精度的提高.

算法融合、自适应、粒子群、模拟退火、支持向量机、组合预测

TM715(输配电工程、电力网及电力系统)

2012-11-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

109-113

相关文献
评论
相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn