期刊专题

10.3969/j.issn.1674-3415.2010.17.024

基于改进PSO的LSSVM参数优化在变压器故障诊断中的应用

引用
提出了一种基于最小二乘支持向量机的变压器故障诊断的智能方法.为了提高故障诊断的精确度,利用改进粒子群算法来对最小二乘支持向量机进行参数优化,改进后的粒子群算法能够较好地调整算法的全局与局部搜索能力之间的平衡.试验结果证明:该方法不仅能够取得良好的分类效果,而且诊断速度与精度高于传统支持向量机和BP神经网络,更适合在变压器故障诊断中应用.

变压器、故障诊断、最小二乘支持向量机、改进粒子群算法、BP神经网络

38

TM83(高电压技术)

2010-11-02(万方平台首次上网日期,不代表论文的发表时间)

共5页

121-124,152

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统保护与控制

1674-3415

41-1401/TM

38

2010,38(17)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn