期刊专题

10.3969/j.issn.1674-3415.2010.11.002

基于免疫RBF神经网络的变压器故障诊断

引用
为了提高变压器故障诊断的准确率,提出一种免疫RBF混合智能诊断算法,用免疫聚类算法确定RBF神经网络隐含层中心的数量和初始位置,减少了网络训练的计算量,提高了网络的泛化能力;用遗传算法对RBF网络训练,进一步优化网络的结构和连接权重,将训练后的RBF网络应用于变压器故障诊断.经过大量实例分析,并将其结果与其他算法进行对比,表明该方法算法精简,诊断正确率高.

变压器、故障诊断、免疫聚类、RBF网络

38

TM76(输配电工程、电力网及电力系统)

2010-08-04(万方平台首次上网日期,不代表论文的发表时间)

共5页

6-9,14

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统保护与控制

1674-3415

41-1401/TM

38

2010,38(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn