期刊专题

10.3969/j.issn.1674-3415.2006.16.016

一种基于最小二乘支持向量机的年电力需求预测方法

引用
针对电力系统年用电量增长的特点,将最小二乘支持向量机LS-SVM(least squares support vector machine)回归模型引入年电力需求预测领域,并给出了相应的过程和算法.与常规基于人工神经网络ANN(artificial neural networks)的智能预测方法比较,该模型优点是明显的:1)将神经网络迭代学习问题转化为直接求解多元线性方程;2)整个训练过程中有且仅有一个全局极值点,确定了预测的稳定性;3)将年电力需求预测的外插回归问题转换为内插问题,提高了预测精度.应用实例表明:该模型实现容易、预测精度高,更适合年电力需求预测.

年电力需求、最小二乘支持向量机(LS-SVM)、回归、预测

34

TM715(输配电工程、电力网及电力系统)

2006-09-27(万方平台首次上网日期,不代表论文的发表时间)

共5页

74-78

暂无封面信息
查看本期封面目录

继电器

1003-4897

41-1121/TM

34

2006,34(16)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn