10.3969/j.issn.1001-3881.2023.19.001
小样本磨削表面粗糙度测量方法研究
基于机器视觉的表面粗糙度测量方法主要通过图像特征信息与粗糙度的关联指标建立预测模型,但是样本量不足往往难以训练出有效的模型,导致测量准确率较低.针对以上问题,提出一种小样本磨削表面粗糙度测量方法.建立图像采集系统,采集不同粗糙度等级磨削表面图像作为原始样本;通过虚拟样本生成算法扩充样本量,采用灰度共生矩阵提取样本纹理特征;最后,通过神经网络建立预测模型.试验结果表明:样本量扩充后,表面粗糙度测量的准确率从 80.4%提升到 97.2%,证明了此方法的可行性,为小样本磨削表面粗糙度在机检测提供理论基础.
表面粗糙度、虚拟样本、纹理特征、神经网络、机器视觉
51
TP391(计算技术、计算机技术)
国家自然科学基金;国防基础科研项目;航空发动机;燃气机重大专项基础研究项目
2023-11-10(万方平台首次上网日期,不代表论文的发表时间)
共8页
1-8