10.3969/j.issn.1001-3881.2023.13.032
基于迁移学习的滚动轴承复合故障诊断研究
针对现有故障诊断方法多是面向单一故障进行研究,对于实际工况下的复合故障缺乏相应的诊断方法,提出一种基于有监督学习的ConvNeXt滚动轴承多工况复合故障诊断模型(TConvNeXt).通过合成少数类过采样技术将滚动轴承数据集重构为平衡数据集,以提高复合故障样本的利用率;利用迁移学习使TConvNeXt网络模型掌握判别滚动轴承复合故障信息所需的部分权重,通过格拉姆角场将一维信号转换为RGB图像输入模型,训练模型剩余权重;最后将训练后的TConvNeXt网络模型用于滚动轴承故障诊断并且利用Grad-CAM方法进行可视化,分析网络诊断错误起因并对网络进行调整;将训练准确率最高的模型用于滚动轴承故障实测,检验其实际工况下的诊断能力.实验结果表明:TConvNeXt网络模型具有高诊断精度,它不仅在混叠故障诊断中表现突出,在单一故障诊断中也具有优势,能够很好地适应多工况下不同故障类型的滚动轴承故障诊断要求.
复合故障诊断、迁移学习、ConvNeXt卷积神经网络、Grad-CAM方法
51
TH17
山西省应用基础研究计划项目201901D111239
2023-08-31(万方平台首次上网日期,不代表论文的发表时间)
共8页
198-205