期刊专题

10.3969/j.issn.1001-3881.2023.12.031

基于CEEMDAN和层次波动离散熵的滚动轴承声音信号故障检测

引用
声音信号在收集时具有非接触测量的优势,但容易受到周围环境噪声的干扰而导致信噪比较低,不利于特征信息的获取.为从滚动轴承声音数据中提炼出有效的特征信息,并实现故障的精准识别,提出一种基于自适应噪声完全集成经验模态分解(CEEMDAN)和层次波动离散熵(HFDE)的声音信号故障诊断策略.在该策略中,CEEMDAN缓解了集成经验模态分解(EEMD)的模态混淆缺陷;针对传统多尺度波动离散熵(MFDE)无法考虑时间序列的高频信息的缺陷,提出一种基于层次化处理的层次波动离散熵非线性动力学指标.将所提策略用于滚动轴承的故障识别,能够检测出不同故障状态下的声音数据.通过数值模拟和滚动轴承实验数据分析,将所提方法与CEEMDAN-MFDE、EEMD-HFDE、EEMD-MFDE、HFDE和MFDE进行对比.结果表明:所提方法达到了 100%的识别准确率,多次实验的平均识别准确率也达到了99.5%,均高于对比方法,从而验证了该策略的有效性和优越性.

滚动轴承声音信号、故障检测、白适应噪声完备集成经验模态分解、层次波动离散熵、层次处理

51

TH17

2023-08-18(万方平台首次上网日期,不代表论文的发表时间)

共9页

195-203

暂无封面信息
查看本期封面目录

机床与液压

1001-3881

44-1259/TH

51

2023,51(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn