10.3969/j.issn.1001-3881.2023.05.033
基于改进LFQPSO优化MRVM的轴向柱塞泵故障诊断
针对传统粒子群优化算法以准确率或误判率作为适应度函数耗时长和轴向柱塞泵故障机制较为复杂的问题,提出一种基于改进适应度函数的Lévy飞行量子粒子群优化(QPSO)多分类相关向量机(MRVM)的轴向柱塞泵概率性智能软状态判别方法.为了克服人为设定核参数不精确、效率低等缺点,采用基于Lévy飞行的QPSO搜索MRVM的最优核参数;为了缩短寻优时间,将样本间余弦相似度作为寻优算法的适应度函数,并利用UCI机器学习标准数据集进行仿真来验证改进后优化方法的有效性及优越性;采集柱塞泵不同故障状态的数据,提取时频域和时域特征,输入到优化后的MRVM中,进行训练及测试.实验结果表明:所提方法可以有效提高故障诊断的准确率及诊断效率,同时能够实现软分类,即以概率形式输出诊断结果,能够为设备检修及维护提供可靠且符合实际的故障信息.
相关向量机、Lévy飞行策略、量子粒子群优化、故障诊断、轴向柱塞泵
51
TH137.51
国家自然科学基金;河北省自然科学基金重点项目;河北省自然科学基金重点项目
2023-05-11(万方平台首次上网日期,不代表论文的发表时间)
共10页
202-211