期刊专题

10.3969/j.issn.1001-3881.2023.05.033

基于改进LFQPSO优化MRVM的轴向柱塞泵故障诊断

引用
针对传统粒子群优化算法以准确率或误判率作为适应度函数耗时长和轴向柱塞泵故障机制较为复杂的问题,提出一种基于改进适应度函数的Lévy飞行量子粒子群优化(QPSO)多分类相关向量机(MRVM)的轴向柱塞泵概率性智能软状态判别方法.为了克服人为设定核参数不精确、效率低等缺点,采用基于Lévy飞行的QPSO搜索MRVM的最优核参数;为了缩短寻优时间,将样本间余弦相似度作为寻优算法的适应度函数,并利用UCI机器学习标准数据集进行仿真来验证改进后优化方法的有效性及优越性;采集柱塞泵不同故障状态的数据,提取时频域和时域特征,输入到优化后的MRVM中,进行训练及测试.实验结果表明:所提方法可以有效提高故障诊断的准确率及诊断效率,同时能够实现软分类,即以概率形式输出诊断结果,能够为设备检修及维护提供可靠且符合实际的故障信息.

相关向量机、Lévy飞行策略、量子粒子群优化、故障诊断、轴向柱塞泵

51

TH137.51

国家自然科学基金;河北省自然科学基金重点项目;河北省自然科学基金重点项目

2023-05-11(万方平台首次上网日期,不代表论文的发表时间)

共10页

202-211

暂无封面信息
查看本期封面目录

机床与液压

1001-3881

44-1259/TH

51

2023,51(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn