10.3969/j.issn.1001-3881.2021.21.020
基于GABP神经网络的微铣削多目标预测与优化研究
针对子午线轮胎模具侧板加工过程中存在加工能耗高、表面质量差的问题,以45号钢子午线轮胎模具侧板为研究对象进行微铣削试验,着重研究主轴转速、每齿进给量、切削深度3个切削参数对切削比能和表面粗糙度的影响.通过试验数据样本训练和检测基于遗传算法改进的多目标BP神经网络,实现不同切削参数组合下切削比能和表面粗糙度的多目标预测;利用NSGA-Ⅱ对切削参数进行多目标优化,获得了20组Pateto解.预测和优化结果表明:提高主轴转速既有利于降低切削比能又有利于改善表面粗糙度,而增大每齿进给量和切削深度会降低切削比能但会增大表面粗糙度;切削比能和表面粗糙度相互抑制,不能同时改善.在兼顾切削比能和表面粗糙度的情况下,较优参数为主轴转速19370~20000 r/min、每齿进给量0.055~0.06 mm/齿、切削深度0.4~0.456 mm.
微铣削;切削比能;表面粗糙度;多目标优化;改进BP神经网络;NSGA-Ⅱ
49
TG506(金属切削加工及机床)
山东省重点研发计划重大科技创新工程项目2018CXGC0602
2021-12-08(万方平台首次上网日期,不代表论文的发表时间)
共5页
109-113