期刊专题

10.3969/j.issn.1001-3881.2021.11.021

基于Faster R-CNN算法的列车轴承表面缺陷检测研究

引用
将深度学习Faster R-CNN应用于列车轴承图像的表面缺陷检测.建立人工数据库BSD,通过对图像增广弥补数据不足的缺陷;采用Faster R-CNN算法进行目标检测和识别,卷积神经网络采用ZF Net模型,对BSD数据集训练,得到检测结果;并与传统检测方法Canny算法的检测结果进行比较.试验结果表明:和传统Canny算法比较,基于Faster R-CNN算法的轴承缺陷的检测精度为93.03%、检测时间为0.29 s,相比传统Canny算法检测精度提升21.73%、检测时间减少2.21 s,同时准确率大幅度提高,能够实现轴承表面缺陷的精确检测和识别,满足铁路部门对轴承检修的需求.

深度学习、缺陷检测、图像增广、卷积神经网络

49

TH133.3;TP183;TN911.73

新疆维吾尔自治区自然科学基金;内蒙古自治区高等学校科学技术研究项目

2021-07-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

103-108

暂无封面信息
查看本期封面目录

机床与液压

1001-3881

44-1259/TH

49

2021,49(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn