10.3969/j.issn.1001-3881.2021.11.006
基于Adam优化算法的双目机器人手眼标定方法
在智能制造领域,视觉机器人应用前景十分广阔.视觉机器人的手眼标定精度直接关系到机器人的后续作业精度.为了进一步提高机器人的手眼标定精度,现提出一种基于Adam优化算法的双目Eye-to-Hand型机器人的手眼标定方法.根据多体运动学理论,建立了6DOF机器人手眼标定数学模型,以Halcon输出的手眼标定矩阵为初始值,采用Adam优化算法对目标函数进行迭代求解,将由优化前后手眼矩阵得到的两组机器人末端坐标系的位姿分别与从示教器得到的位姿作差值,并取Frobenius范数.结果表明:相机标定误差为0.089个像素,优化后的Frobenius范数平均值小于优化前,且一致性好.
手眼标定、双目视觉、Adam优化算法、Eye-to-Hand型机器人
49
TP242(自动化技术及设备)
河南省科技攻关计划202102210284
2021-07-15(万方平台首次上网日期,不代表论文的发表时间)
共5页
26-30