期刊专题

10.3969/j.issn.1001-3881.2017.17.023

冷滚打花键表面粗糙度神经网络预测模型建立

引用
为降低冷滚打花键表面粗糙度,获得冷滚打加工最优参数组合,以滚打轮公转转速和工件进给量两个影响表面粗糙度的主要因素作为变量,设计了冷滚打花键及测量实验方案,采用白光共聚干涉显微镜测量冷滚打花键分度圆处表面粗糙度,依据实验数据通过试凑法建立了冷滚打花键表面粗糙度BP神经网络预测模型,最终确定的神经网络结构为2-6-2-1,对预测值与训练样本值及测试样本值进行了对比分析,结果表明:预测值与训练样本最大误差6.5%,与测试样本最大误差7.9%,预测值与训练样本之间的相关系数为0.996,与测试样本之间的相关系数为0.973,进一步说明了神经网络预测模型的有效性和精确性.

冷滚打、花键、表面粗糙度、神经网络模型

45

TH16

国家自然科学基金资助项目51475146

2017-11-22(万方平台首次上网日期,不代表论文的发表时间)

共6页

99-104

暂无封面信息
查看本期封面目录

机床与液压

1001-3881

44-1259/TH

45

2017,45(17)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn