期刊专题

10.3969/j.issn.1001-3881.2013.07.057

基于小波包-隐马尔科夫模型的机床加工状态识别

引用
机床加工状态对加工工件质量有很大的影响,因此识别机床加工状态有重要的意义.依据采集的机床加工数据,通过FFT频谱分析,划分出机床加工的3种状态.利用小波包分解,分别求出各种状态在不同频带节点上的能量分布百分比,并把它作为隐马尔科夫模型的输入特征向量.按照隐马尔科夫模型模式识别方法,建立3种标准状态的训练优化模型库,把测试样本代入优化模型库中,依据最大对数似然值对机床的加工状态进行了识别.计算结果表明,状态识别结果正确.

小波包、隐马尔科夫模型、机床、状态识别

TH133;TP391

2013-05-30(万方平台首次上网日期,不代表论文的发表时间)

共3页

202-204

暂无封面信息
查看本期封面目录

机床与液压

1001-3881

2013,(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn