期刊专题

10.3969/j.issn.1001-3881.2010.21.008

基于神经网络和形态学的钢表面缺陷识别

引用
钢表面图像的信噪比很低,探测目标很小,形状也不规则,因此钢材表面缺陷难于识别.引进基于神经网络和形态学的图像识别方法检测钢表面的各种缺陷,简述图像的预处理和BP神经网络建立的基本过程.通过对比BP神经和RGB阈值方法对钢表面图像的分割结果,表明BP神经网络方法优于RGB阈值方法.利用形态学处理方法过滤噪声,使结果更清晰.此方法能检测出不同类型的缺陷,且具有很强的鲁棒性.

神经网络、形态学、钢表面缺陷、图像识别

38

TP183;TP391.4(自动化基础理论)

国家自然科学基金资助项目50775229

2011-01-28(万方平台首次上网日期,不代表论文的发表时间)

共3页

26-28

暂无封面信息
查看本期封面目录

机床与液压

1001-3881

44-1259/TH

38

2010,38(21)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn