期刊专题

10.3404/j.issn.1672-7619.2017.03.010

UKF和PF融合算法在动力定位船舶状态估计中的应用研究

引用
针对船舶动力定位状态估计时使用扩展卡尔曼滤波导致模型失配而产生滤波精度不高甚至滤波发散的问题,设计一种融合无迹卡尔曼滤波和粒子滤波的动力定位船舶状态估计算法.该算法以粒子滤波作为整体框架,运用无迹卡尔曼滤波对粒子状态的每次更新进行最优化估计,从而最优化了每个粒子的状态,再根据每个粒子的重要性分布,得出船舶复合运动中的低频状态.Matlab仿真结果表明,该方法能够从含有高频和噪声干扰的测量信息中估计出的船舶低频运动状态,相比于直接使用UKF,该方法的滤波精度更高,滤波性能也比较稳定.

动力定位、状态估计、无迹卡尔曼滤波、粒子滤波

39

TP301.6(计算技术、计算机技术)

国家科技支撑计划资助项目2014BAB13B01

2017-05-08(万方平台首次上网日期,不代表论文的发表时间)

共5页

49-53

相关文献
评论
暂无封面信息
查看本期封面目录

舰船科学技术

1672-7649

11-1885/U

39

2017,39(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn