期刊专题

10.16462/j.cnki.zhjbkz.2019.09.021

基于CNN-LSTM的气象因素与高血压门诊人数关系

引用
目的 探讨甘肃省不同地区气象因素对高血压门诊人数的影响,并对高血压门诊人数的变化趋势进行预测分析,从而为高血压疾病的预防和控制提供参考依据.方法 在控制了高血压门诊相关特征因素的基础上,利用Python编程语言对白银、成县、庆城和凉州四个地区的高血压门诊人数建立卷积神经网络(convolutional neural networks,CNN)和长短期记忆神经网络(long short-term memory,LSTM)混合模型(CNN-LSTM).结果 CNN-LSTM模型对甘肃四个地区预测的高血压门诊人数的均方根误差分别为6.330 9、6.814 2、6.393 6和6.867 6,平均绝对百分比误差分别为74.082 2、78.508 2、56.618 3、50.235 4,平均绝对误差分别为4.875 7、5.431 1、4.542 0和6.460 8,结果均优于支持向量机(support vector machine,SVM)、整合移动平均自回归模型(autoregressive integrated moving average model,ARIMA)、随机森林(random forest,RF)、CNN和LSTM.结论 CNN-LSTM模型可以对甘肃四个地区高血压门诊人数进行较准确的短期预测,医院可以根据不同时间高血压就医需求合理配置医疗资源.

高血压、气象要素、空气污染物、时间序列分析、CNN-LSTM模型

23

R195;TP183(保健组织与事业(卫生事业管理))

国家自然科学基金61662043

2019-10-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

1126-1131

暂无封面信息
查看本期封面目录

中华疾病控制杂志

1674-3679

34-1304/R

23

2019,23(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn