期刊专题

10.13954/j.cnki.hdu.2018.05.006

基于深度学习的车牌图像去运动模糊技术

引用
针对目前车牌去运动模糊算法的估计模糊核过程复杂、复原质量低等问题,提出一种基于生成对抗网络的车牌去运动模糊算法.运用深度学习的方法对运动模糊图像直接进行复原,省去了估计模糊核的过程,并且增加梯度图像l1正则化,保护复原图像的强边缘特征;最后以分割后的车牌字符作为网络输入,随机抽取等量数据进行训练并测试,以增强网络泛化能力.实验结果表明,提出的模型能够有效去除合成运动模糊图像和真实场景下运动模糊图像中存在的运动模糊,对比测试阶段的峰值信噪比指标,所提模型比当前最新的去运动模糊模型提升了0.40 dB.

深度学习、去运动模糊、生成对抗网络、l1正则化

38

TP391(计算技术、计算机技术)

2018-10-26(万方平台首次上网日期,不代表论文的发表时间)

共5页

29-33

暂无封面信息
查看本期封面目录

杭州电子科技大学学报

1001-9146

33-1339/TN

38

2018,38(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn