期刊专题

10.13954/j.cnki.hdu.2017.02.010

基于CNN的中国绘画图像分类

引用
提出了一种基于卷积神经网络CNN的中国绘画图像分类方法.首先针对过拟合问题,提出了一种改进的合成少数类过采样技术SMOTE扩增数据,然后将扩增后的数据直接输入到CNN中,经过隐藏层的卷积和亚采样,并采用校正线性单元ReLu、S形生长曲线Sigmoid替代传统的Sigmoid激活函数,提取的数据能更好地表示其特征.实验结果表明,与传统分类方法相比,新提出的方法在中国绘画图像分类上具有良好的分类能力.

SMOTE、ReLu+Sigmoid、卷积神经网络、中国绘画图像分类

37

TP391(计算技术、计算机技术)

国家自然科学基金资助项目61402143,61202280;浙江省自然科学基金资助项目LQ14F020012

2017-06-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

45-50

相关文献
评论
暂无封面信息
查看本期封面目录

杭州电子科技大学学报

1001-9146

33-1339/TN

37

2017,37(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn