发动机尾喷焰复燃化学反应模型评价与重构
复燃效应的准确预估对于精细描述尾喷焰反应流场参数和提高尾喷焰红外辐射计算精度至关重要.文中以固体火箭发动机为研究对象,建立尾喷焰复燃有限速率化学反应模型,结合流体计算动力学(Computational Fluid Dynamics,CFD)方法和尾喷焰红外辐射计算模型,评估不同化学反应动力模型在尾喷焰流场参数和红外光谱辐射计算方面的精度,基于各化学反应速率曲线与试验数据重构适用于尾喷焰CO/H2反应体系的10步气相化学反应动力模型,并验证和校核复燃化学反应模型可靠性.结果表明:不同化学反应模型计算所得的尾喷焰流场结构差异微弱,轴向温度峰值最高相差200 K左右,差异主要发生在复燃区域;化学反应动力模型对不稳定产物CO影响最为显著,CO2分布差异主要发生在高含量区域,最大差异达到近50%,且低含量组分的差异高达两三个量级;在2.7 μm和4.3 μm典型波段内,不同化学反应工况下的尾喷焰光谱辐射峰值强度差异达到近40%;基于反应速率试验数据构建的9组分10步反应的CO/H2反应体系的尾喷焰辐射计算值与BEM-Ⅱ试验数据的差异低于6%.该研究可为准确预测火箭发动机尾喷焰反应流场的红外辐射特性提供高保真化学反应动力模型.
尾喷焰、复燃效应、化学反应、红外辐射、火箭发动机
53
V435(推进系统(发动机、推进器))
2024-08-29(万方平台首次上网日期,不代表论文的发表时间)
共15页
86-100