期刊专题

10.3788/IRLA20200482

合并分割块的点云语义分割方法

引用
随着激光雷达等三维点云获取工具的快速发展,点云的语义信息在计算机视觉、智能驾驶、遥感测绘、智慧城市等领域更具重要意义.针对基于分割块特征匹配的点云语义分割方法无法处理过分割和欠分割点云块、行道树和杆状物的语义分割精度低等问题,提出了 一种基于分割块合并策略的行道树和杆状物点云语义分割方法,该方法可对聚类分割后感兴趣的分割块进行合并,通过计算其多维几何特征实现对合并后的物体分类,并使用插值优化算法对分割结果进行优化,最终实现城市道路环境下行道树和杆状物的语义分割.实验结果表明,所提方法可将城市道路环境下的行道树、杆状物等点云数据的召回率和语义分割精度平均提升至89.9%以上.基于分割块合并的语义分割方法,可以很好地解决城市道路下行道树和杆状物语义分割精度低等问题,该方法对于三维场景感知等问题的研究具有重要意义.

激光雷达、三维点云、语义分割、块合并、行道树

50

P237(摄影测量学与测绘遥感)

基础加强领域基金2019-JCJQ-JJ-273

2021-11-24(万方平台首次上网日期,不代表论文的发表时间)

共10页

255-264

暂无封面信息
查看本期封面目录

红外与激光工程

1007-2276

12-1261/TN

50

2021,50(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn